DIC in variable selection
نویسنده
چکیده
Model comparison is discussed from an information theoretic point of view. In particular the posterior predictive entropy is related to the target yielding DIC and modifications thereof. The adequacy of criteria for posterior predictive model comparison is also investigated depending on the comparison to be made. In particular variable selection as a special problem of model choice is formalized in different ways according to whether the comparison is a comparison across models or within an encompassing model and whether a joint or conditional sampling scheme is applied. DIC has been devised for comparisons across models. Its use in variable selection and that of other criteria is illustrated for a simulated data set.
منابع مشابه
Robust Deviance Information Criterion for Latent Variable Models∗
It is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison, although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular a...
متن کاملFast computation of the deviance information criterion for latent variable models
The deviance information criterion (DIC) has been widely used for Bayesian model comparison. However, recent studies have cautioned against the use of the DIC for comparing latent variable models. In particular, the DIC calculated using the conditional likelihood (obtained by conditioning on the latent variables) is found to be inappropriate, whereas the DIC computed using the integrated likeli...
متن کاملBayesian variable selection for a semi-competing risks model with three hazard functions
A variable selection procedure is developed for a semi-competing risks regression model with three hazard functions that uses spike-and-slab priors and stochastic search variable selection algorithms for posterior inference. A rule is devised for choosing the threshold on the marginal posterior probability of variable inclusion based on the Deviance Information Criterion (DIC) that is examined ...
متن کاملAssessing local model adequacy in Bayesian hierarchical models using the partitioned deviance information criterion
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the l...
متن کاملDeviance information criterion (DIC) in Bayesian multiple QTL mapping
Mapping multiple quantitative trait loci (QTL) is commonly viewed as a problem of model selection. Various model selection criteria have been proposed, primarily in the non-Bayesian framework. The deviance information criterion (DIC) is the most popular criterion for Bayesian model selection and model comparison but has not been applied to Bayesian multiple QTL mapping. A derivation of the DIC ...
متن کامل